Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
PeerJ Comput Sci ; 8: e1085, 2022.
Article in English | MEDLINE | ID: covidwho-2110903

ABSTRACT

Urgent global research demands real-time dissemination of precise data. Wikidata, a collaborative and openly licensed knowledge graph available in RDF format, provides an ideal forum for exchanging structured data that can be verified and consolidated using validation schemas and bot edits. In this research article, we catalog an automatable task set necessary to assess and validate the portion of Wikidata relating to the COVID-19 epidemiology. These tasks assess statistical data and are implemented in SPARQL, a query language for semantic databases. We demonstrate the efficiency of our methods for evaluating structured non-relational information on COVID-19 in Wikidata, and its applicability in collaborative ontologies and knowledge graphs more broadly. We show the advantages and limitations of our proposed approach by comparing it to the features of other methods for the validation of linked web data as revealed by previous research.

2.
Semantic Web ; 13(2):233-264, 2022.
Article in English | ProQuest Central | ID: covidwho-1674286

ABSTRACT

Information related to the COVID-19 pandemic ranges from biological to bibliographic, from geographical to genetic and beyond. The structure of the raw data is highly complex, so converting it to meaningful insight requires data curation, integration, extraction and visualization, the global crowdsourcing of which provides both additional challenges and opportunities. Wikidata is an interdisciplinary, multilingual, open collaborative knowledge base of more than 90 million entities connected by well over a billion relationships. It acts as a web-scale platform for broader computer-supported cooperative work and linked open data, since it can be written to and queried in multiple ways in near real time by specialists, automated tools and the public. The main query language, SPARQL, is a semantic language used to retrieve and process information from databases saved in Resource Description Framework (RDF) format. Here, we introduce four aspects of Wikidata that enable it to serve as a knowledge base for general information on the COVID-19 pandemic: its flexible data model, its multilingual features, its alignment to multiple external databases, and its multidisciplinary organization. The rich knowledge graph created for COVID-19 in Wikidata can be visualized, explored, and analyzed for purposes like decision support as well as educational and scholarly research.

3.
mSystems ; 6(5): e0009521, 2021 10 26.
Article in English | MEDLINE | ID: covidwho-1483995

ABSTRACT

The novel coronavirus SARS-CoV-2, which emerged in late 2019, has since spread around the world and infected hundreds of millions of people with coronavirus disease 2019 (COVID-19). While this viral species was unknown prior to January 2020, its similarity to other coronaviruses that infect humans has allowed for rapid insight into the mechanisms that it uses to infect human hosts, as well as the ways in which the human immune system can respond. Here, we contextualize SARS-CoV-2 among other coronaviruses and identify what is known and what can be inferred about its behavior once inside a human host. Because the genomic content of coronaviruses, which specifies the virus's structure, is highly conserved, early genomic analysis provided a significant head start in predicting viral pathogenesis and in understanding potential differences among variants. The pathogenesis of the virus offers insights into symptomatology, transmission, and individual susceptibility. Additionally, prior research into interactions between the human immune system and coronaviruses has identified how these viruses can evade the immune system's protective mechanisms. We also explore systems-level research into the regulatory and proteomic effects of SARS-CoV-2 infection and the immune response. Understanding the structure and behavior of the virus serves to contextualize the many facets of the COVID-19 pandemic and can influence efforts to control the virus and treat the disease. IMPORTANCE COVID-19 involves a number of organ systems and can present with a wide range of symptoms. From how the virus infects cells to how it spreads between people, the available research suggests that these patterns are very similar to those seen in the closely related viruses SARS-CoV-1 and possibly Middle East respiratory syndrome-related CoV (MERS-CoV). Understanding the pathogenesis of the SARS-CoV-2 virus also contextualizes how the different biological systems affected by COVID-19 connect. Exploring the structure, phylogeny, and pathogenesis of the virus therefore helps to guide interpretation of the broader impacts of the virus on the human body and on human populations. For this reason, an in-depth exploration of viral mechanisms is critical to a robust understanding of SARS-CoV-2 and, potentially, future emergent human CoVs (HCoVs).

SELECTION OF CITATIONS
SEARCH DETAIL